CS3690 - Network Security Summer Quarter, 2000CS3690 - Network Security



# **Objectives**

- Attack Thresholds
- Types of Attack
- **Examples**
- Targets

Summer Quarter, 2000

C. Irvine; NPS CISR

2

# **Attack Terminology**

- Vulnerabilities
  - ★ weaknesses in system
  - \* security flaws
  - \* does not include benign failure
- Attacks
  - \* exploitation of vulnerabilities
- Threats
  - \* adversaries capable of mounting attacks against vulnerabilities
  - ★ leads to Threat Model
- Risk
  - \* likelihood that vulnerability will be exploited

Summer Ouarter, 2000

C. Irvine; NPS CISR

3

# **Need for Network Security**

'The resources necessary to conduct a cyber attack are commonplace. A personal computer and a simple telephone connection to an Internet Service Provider anywhere in the world are enough to cause a great deal of harm" --PCCIP

- Attractive Targets
- Lack of Security
- Multiple user communities sharing common networks
  - \* public networks
  - ★ common-user networks

Summer Quarter, 2000

C. Irvine; NPS CISR

4

# **Trends Affecting Computer Security**

- Increased Interconnection to unknown users
- Use of Networks for Sensitive Information
- Soon: Ubiquitous use of Digital Signatures
- Banking electronic funds transfer
  - ★ 1970s: electronic funds transfer -- insure integrity of transactions
     ★ 1980s: ATM machines

  - insure secrecy of PINs across network 1990s: Seek cost savings using electronic services
     want to insure authenticity of transaction
- Electronic Business Data Interchange (EDI)
  - \* Requirements for integrity, confidentiality, authenticity
  - \* Also need to treat as contractual documents
- Telecommunications
  - \* Managed using networked computers
  - \* Must protect from theft of service
  - \* Considered critical and must have continuous operation
- Government information: SBU
  - \* need to insure privacy, e.g. electronic tax returns
  - \* government contracts
    - Comptroller General Decision in 1991 permits government use of electronic signatures for contracts
- Corporate Proprietary Information
  - \* contracts, proprietary information
  - \* huge intranets connected to Internet
  - \* increased telecommuting
  - \* Internetworking Classified and Unclassified Networks

Summer Quarter, 2000

C. Irvine: NPS CISR

5

#### **Application Environment Security Requirements I**

- Banking
  - \* Insure integrity of transactions
  - \* Authenticate sources of transactions (e.g. retail transactions customers)-Insure secrecy of PINs
  - ★ Provide customer confidentiality
- **■** Telecommunications
  - ★ Protect user's privacy
  - ★ Insure continuity of service
  - ★ Isolate administrative privileges
- Government(SBU)
  - \* Protect Privacy Act Information
  - \* Insure information confidentiality for SBU
  - \* Provide electronic signatures for contractual documents

Summer Ouarter, 2000

C. Irvine: NPS CISR

6

C. Irvine; NPS CISR

#### **Application Environment Security Requirements II**

- Government(Classified)
  - \* Protect information affecting national security
  - \* Protect intelligence information
  - \* Insure integrity of weapons systemsCorporate Networks
  - **★** Protect corporate confidentiality
  - \* Insure authenticity of messages
- Electronic trading
  - \* Authenticate source of transactions
  - \* Insure integrity of transactions
  - \* Insure confidentiality of critical corporate information
  - ★ Provide legally binding contracts

Summer Quarter, 2000

C. Irvine; NPS CISR

7

# **Network Security Objectives**

- Confidentiality
  - \* Ensure that unauthorized individuals are denied access to information and resources
- Integrity
  - Ensure that information is created, modified, or destroyed only by authorized users, that data is consistent
- Availability
  - \* Ensure that access to information and resources are accessible to legitimate users
- Network Security
- Security measures include activities ranging from emanations security through personnel security
- Here we will concentrate on communications security and computer security
  - ★ These must work together
    - Computer Security security within the computer
    - · Communications Security security of information while it transits between computers
- Network security is characterized by security services
- Basic Security Notions
  - \* Security Policy
  - \* Threats and Safeguards
  - **★** Security Services

Summer Ouarter, 2000 Detection and Audit Supports, NPS CISR

8

C. Irvine; NPS CISR

# **Security Policies**

- Apply to specific security domains and are established by authorities for those domains.
- Security policy refinement
  - \* Security policy objectives
    - organization's statement of intent regarding protection of specific resources.
       This may be quite general. For example, Government protects information that affects the national security
  - ★ Organizational security policy
    - specific rules and regulations that describe how the security policy objectives
      will be achieved. An organizational security policy is often in terms of people and
      information. Philosophical Question: In the Information Age, do we envision
      policies that would not involve people?
  - ★ System security policy
    - If we understand systems to be an extension of the people associated with the
      organization, then systems are operated on behalf of those people. Here the
      policy is a technical statement describing how a system is engineered to support
      the organizational security policy.

Summer Ouarter, 2000

C. Irvine; NPS CISR

9

### **Key Aspects of Policy**

- Authorization
- Access Control
  - **★** Mandatory
  - ★ Discretionary
- Accountability
  - \* Auditing
    - · Identification and Authentication

Summer Quarter, 2000

C. Irvine; NPS CISR

10

# **Threats and Safeguards**

- Threat
  - \* Danger to confidentiality, integrity or availability
- Passive
  - ★ monitoring traffic
  - \* obtaining the contents of a message
  - \* traffic analysis
- Active
  - \* introducing a Trojan Horse to deliberately violate policy
  - \* modification of information
  - \* fabrication of false information
  - ★ denial of service attacks
- Malicious/Accidental
  - \* Spamming
  - \* Sending e-mail to the wrong person

Summer Quarter, 2000

C. Irvine; NPS CISR

11

# Threats correspond to security objectives

- Information leakage
- Integrity violation
- Denial of Service
- (some include illegitimate use)Primary Enabling Threats
- Masquerade
- Bypass of controls
- Authorization violation
- Planting Threats
- Trojan Horse Trapdoor
- Underlying Threats
  - \* eavesdropping
  - \* traffic analysis
  - ★ loquacious, indiscreet individuals
  - \* media scavenging

Summer Quarter, 2000

C. Irvine; NPS CISR

12

# **Trends Affecting Attacks**

- Increasing Ease of Engineering an Attack
- Famous attacks
  - ★ Stoll's "wiley hacker"
  - **★** Morris Internet worm
  - ★ Government homepage graffiti
  - ★ Takedown of Midnick (release of Midnick?)
  - ★ How-to guides for attackers

Summer Quarter, 2000

C. Irvine; NPS CISR

13

# **Security Services: Authentication**

- Provides assurances of the identity of a person or system
  - \* photo id card driver's license
  - \* mother's maiden name at the bank
  - \* entity authentication
    - · Authentication of a remote party in a communications exchange
    - · Who's there?
    - · Needed to support access control
    - · Can be used to provide data integrity authentication
    - · Supports accountability
    - · Identities in the audit trail
  - \* data origin authentication
    - · Originator of data item is given along with data
    - · Who is sending this?
    - · helps to insure the integrity of a data item

Summer Quarter, 2000

C. Irvine; NPS CISR

14

# **Access Control Service**

- provides protection against unauthorized use or manipulation of resources
  - **★ locks and keysguards**
  - ★ who can use, modify, read, destroy, and issue commands
  - \* supports confidentiality, integrity, availability
    - · who can issue management commands
    - · who can tie up resources
    - who can obtain information to be used for denial of service attacks

#### **Reference Monitor Concept Critical**

Summer Ouarter, 2000

C. Irvine; NPS CISR

15

# **Reference Monitor Concept**

- Mediates access
- Defines security perimeter
- POLICY INDEPENDENT
  - \* applicable to a variety of policies
  - \* applicable to many implementations of policy
- General Schema:
  - \* Objects
    - · passive entities containing information
  - \* Subjects active entities.
  - **★** Authorization Database
  - **★** Two Types of functions
    - · Authorization functions change authorization database-
    - · Reference functions access information
      - observe and/or modify
- Requirements
  - · Completeness Isolation Verifiability

Summer Ouarter, 2000

C. Irvine; NPS CISR

16

8

# **Non-repudiation Service**

- Provides protection to one or both parties in an information exchange against subsequent denial of that exchange by the other party
  - \* notary's signature
  - \* process servers, certified mail, receipts of mail delivery
  - ★ Repudiation of origin
    - disputes over whether a particular entity originated a given data item
  - **★** Repudiation of delivery
    - dispute over whether a particular data item was delivered to a particular party

Summer Ouarter, 2000

C. Irvine; NPS CISR

17

# **Security Services Data Integrity Service**

- Provides protection against unauthorized the modification, deletion or substitution of information
  - \* indelible ink
  - ★ credit card/driver's licence holography
  - ★ wish to prevent: modification, replay, creation, deletion of data items - What are some banking examples?
  - **★** Granularity:
    - · connection integrity service
    - · connectionless integrity service
    - · selected field integrity service

Summer Ouarter, 2000

C. Irvine; NPS CISR

# **Security Services: Confidentiality Service**

- Provides protection against unauthorized disclosure of information to entities
  - \* opaque envelopes, seals
  - \* invisible ink
  - \* note the difference between data and information
  - \* data item in storage existence or non-existence of data item size of data item
  - ★ dynamic characteristics of the system
  - ⋆ Data Confidentiality Service
    - sensitive information cannot be revealed by inspecting the size of content of a data item (encryption)
  - \* Granularity
    - · connection confidentiality service all data transmitted on a connection
    - connectionless confidentiality service all data in one connectionless data unitselective field confidentiality service - applies to specific fields in the data unit
  - **★** Traffic Flow Confidentiality

Summer Quarter, 2000

C. Irvine; NPS CISR

19

### **Example Threats**

- Informal RequirementsThreats
- Everyone: keep out hackers
- Masquerade
  - \* Banking
    - · Insure integrity of transactions
  - ★ Authenticate sources of transactions (e.g. retail transactions customers)
  - ★ Insure secrecy of PINs
  - **★** Provide customer confidentiality
- Integrity violations
- Masquerade, repudiation

Summer Quarter, 2000

C. Irvine; NPS CISR

20

10

### **Eavesdropping**

- Government (SBU)
  - **★** Protect Privacy Act Information
  - \* Insure information confidentiality for SBU
  - \* Provide electronic signatures for contractual documents
- Masquerade, authorization violation, eavesdropping, integrity violation
- Repudiation
- Government (Classified)
  - \* Protect information affecting national security
  - **★** Protect intelligence information
  - \* Insure integrity of weapons systems
- Masquerade, authorization violation, eavesdropping, integrity violationCorporateProtect corporate confidentialityInsure authenticity of messages
- Eavesdropping
- Masquerade, Integrity violation
- Electronic Trading
  - **★** Authenticate source of transactions
  - \* Insure integrity of transactions
  - ★ Insure confidentiality of critical corporate information
- Provide legally binding contracts
- Summer Quarter 2000

C. Irvine; NPS CISR

21

# **Eavesdropping**

- **■** Repudiation
- TelecommunicationsProtect user's privacy
- Insure continuity of service
- Isolate administrative privileges

Summer Quarter, 2000

C. Irvine; NPS CISR

# **Eavesdropping**

- **Denial of Service**
- Masquerade, authorization violation

Summer Quarter, 2000

C. Irvine; NPS CISR

23

# **Threat Model**

- Adversary
  - **★** Sponsorship
    - · State or Large Well Funded Organization
  - **★** Time
  - **★ Equipment and Resources**
  - **★** Skill
  - **★** Egoless

Summer Quarter, 2000

C. Irvine; NPS CISR

24

# **Threat Model**

- Method of Attack
  - **★ Subvert Systems During Development**
  - **★ Subvert Systems During Upgrades**
  - ★ Subvert Systems via Data Driven Attacks
    - · Usually using the victim as an unwitting accomplice
- **With Hooks in Systems** 
  - ★ Attack at will Any Time, Any Place

Summer Quarter, 2000

C. Irvine; NPS CISR

25

# When is Security Good Enough?

- Perfect Security Cannot be Achieved
  - \* Wouldn't want it anyway cannot get work done
- Need security sufficient for accepted threat model
- Absence of obvious insecurity does not imply a secure system
  - ★ Dijkstra stated that there was no way other than good engineering to build sound software. Testing can demonstrate the presence or absence of a particular bug but cannot show the absence of bugs in general.
- Risk Analysis
  - ★ Permits application of Security mechanisms in a systematic manner
  - \* Provides a methodolgy for defining Adequate Security

Summer Quarter, 2000

C. Irvine; NPS CISR

# **Attack Thresholds**

- Attacks are esoteric only for a short time
  - \* tool kits become available with tested attack tools
  - \* inexperienced attackers can use them
- Technical Attacks are not Expensive
  - **★** hardware is relatively inexpensive
  - ★ software is effectively free
- No attack should be dismissed because it seems "too technical" for attackers

Summer Quarter, 2000

C. Irvine; NPS CISR

27

# Attacks on the Wire

- Passive
  - **★** listen without modification of messages
    - · do not affect network operations
  - ★ Usually cannot detect
  - **★** Preventable
- Active
  - **★** Modification of messages
  - ★ Disruptive activity
  - **★** Detectable
  - ★ Not preventable

Summer Quarter, 2000

C. Irvine; NPS CISR

28

# **Attacks**

- Observation of Information
  - \* impact on confidentiality
  - ★ engage in traffic analysis
- Modify Message
  - ★ change contents in manner undetectable by recipient
- Masquerade
  - **★** pretend to be someone else
- Message Stream Manipulation
  - ★ change sequence of messages
  - ★ cause delays in message recipt
  - ⋆ Denial of Service
  - ★ overload hosts or network, thus disrupting ability to communicate
- Replay
  - ★ reuse messages at a later time for disruptive purposes

Summer Quarter, 2000

C. Irvine; NPS CISR

29



# **Security Services**

- Confidentiality
- Authenticity
- **Data Integrity**
- Access Control
- Non-Repudiation
- Availability

Summer Quarter, 2000

C. Irvine; NPS CISR

31

# **Services for Data Confidentiality**

- Data is not revealed or available to unauthorized individuals, entities or processses
- Foremost objective: protection against unauthorized disclosure
  - \* connection-oriented confidentiality
  - \* connectionless confidentiality
  - ★ selective field confidentiality
- Secondary objective: Traffic Flow security
  - \* patterns of message origin and destintation
  - ★ message size
  - \* message transmission frequency
- Mechanisms
  - \* Cryptography

Summer Quarter, 2000

C. Irvine; NPS CISR

32

# **Services for Authenticity**

- Data origin authenticity
  - \* who is the source of this data?
  - \* Needed as input for access control and audit
  - ★ Tied to data integrity services
- Peer entity authentication
  - ★ timeliness vs. replay
  - \* peer in the association is the one claimed
  - \* applicable to connection-oriented communication
- Granularity Considerations
- Mechanisms:
  - \* Key distribution
  - \* protocols
  - ★ user identity validation

Summer Ouarter, 2000

C. Irvine; NPS CISR

33

# **Data Integrity Services**

- Insure against unauthorized data modification or destruction
- Connectless Integrity
  - ⋆ per message
  - \* protect message contents from undetected modification
  - \* associated with data origin authentication
- Connection-oriented integrity
  - ★ often provided by transport layer protocols
  - \* ensure that all of the data is at destination
    - reassembly
- Mechanisms
  - \* detection codes
  - ★ time stamps
  - \* sequence numbers
  - \* cryptography

Summer Quarter, 2000

C. Irvine; NPS CISR

34



# **Non-Repudiation Services**

- Prevent one party in a communication from denial of having participated
- Origin non-repudiation
  - \* Prevent false denial of having sent message
    - · includes time
- Receipt non-repudiation
  - ★ Prevent false denial of having received a message
    - · includes time (what about network latency?)
- Mechanisms
  - \* Digital Signatures
  - ★ Time stamps
  - \* Trusted software
  - **★** Notarization

Summer Quarter, 2000

C. Irvine; NPS CISR

36

# **Availability Services**

- Not a standard service
  - \* Recent DOS attacks indicate that it is needed
- Subjective
  - ★ One person's sufficient availability may be DOS for another
- Similar to wiretapping
  - ★ Know when it is happening
  - \* Cannot prevent it
- Mechanisms
  - **★** replication and fault tolerance
  - ★ reliability mechanisms
  - \* robust algorithms
    - · (see Oakley later on in course)

Summer Quarter, 2000

C. Irvine; NPS CISR

37